Review OOP Concept
This handout was created by Wayne Loo – teacher at Northview Heights SS.

Class (is like the BLUEPRINT to make something.

Object (is made from a BLUEPRINT. So you can make many Objects from 1 Class.

When you make an OBJECT from a CLASS, it is called an INSTANCE of a Class.

Objects have

1. Name (like a name you give an object (Identifier
2. Attributes (like specific characteristics for the object (Variables
3. Behaviours (like actions the object can perform (Instance Methods
UML – Unified Modeling Language

Because in Java everything is wrapped in a class, it can get very confusing!

We can use UML to show the structure of a Class.

	Name of Class

	± Attributes/Variables : Data-Type

	± Behaviour/Methods (param name: param data-type, etc …): Return-Type

± (plus or minus represent the ACCESS MODIFIERS, which are:

+(public

- (private

Example

[image: image1]

[image: image2]
Encapsulation and Access Modifiers

We use public and private to add security to VARIABLES and METHODS. This is called ENCAPSULATION.

public (means a VARIABLE or METHOD can be used INSIDE & OUTSIDE the class

private (means a VARIABLE or METHOD can only be used INSIDE the class

	Public Example
	Private Example

	public class Student

{

 public int age =0;

} // Student class

public class Main

{

 public static void main (String[] args)

 {

 //can change “age” to anything

 //they want! BAD THING!

 s.age = -99;

 System.out.println(s.age);

 } // main method

} // Main class
	public class Student

{

 private int age =10;

 public void changeAge(int num){

 if (num>0){

 age=num;

 }

 }//end changeAge

 public int getAge(){

 return age;

 }//end getAge

} // Student class

public class Main

{

 public static void main (String[] args)

 {

 Student s = new Student();

 //s.age = 100; (no longer possible

 because private

 //won’t change to a negative because
 //the method checks for that

 s.changeAge(-100);

 System.out.println(s.getAge());

 } // main method

} // Main class

Why are the variables private and methods public?
Because we want to protect variables from being accessed directly; so they can’t be changed or used incorrectly. To GET a value from a variable or to GIVE a variable a value we write public methods to do this.

For example we could have changed the setMarks method from the Student Class to prevent users from entering an incorrect value:

	public void setMarks(int x, int y){

 mark1 = x;

 mark2 = y;

}//end setMarks
	public void setMarks(int x, int y){

if (x > 100) {

mark1 = 100;

}else{

mark1 = x;

}//end if

if (y > 100){

mark2 = 100;

}else{

mark2 = y;

}//end if
}//end setMarks

house1 OBJECT

House

-number: int

-street: String

-colour: String

-garage: boolean

House(n: int, s: String, c: String, g: boolean)

+getNumber(): int

+getStreet(): String

+getColour(): String

+haveGarage(): boolean

+paintHouse(String colour):void

number = 10

street = “Nabob Cres.”

colour = “beige”

garage = false

plus + Behaviours/Methods

House CLASS

house2 OBJECT

number = 2

street = “Milita Cres.”

colour = “blue”

garage = true

plus + Behaviours/Methods

Attributes / Variables

Behaviours / Methods

Name of Class

student1 OBJECT

name = john

mark1 = 50

mark2 = 70

average = 60�

plus + Behaviours/Methods

name = tom

mark1 = 80

mark2 = 75

average = 77.5�

plus + Behaviours/Methods

student2 OBJECT

Student

-name: String

-mark1: int

-mark2: int

-average: double

Student(n: String)

+setMarks(x : int, y : int) : void

+calcAverage() : void

+message() : String

Student CLASS

Name of Class

Attributes / Variables

Behaviours / Methods

